src.build_graphs.reshape_edge_feature¶
- src.build_graphs.reshape_edge_feature(F: torch.Tensor, G: torch.Tensor, H: torch.Tensor, device=None) torch.Tensor [source]¶
Given point-level features extracted from images, reshape it into edge feature matrix \(X\), where features are arranged by the order of \(G\), \(H\).
\[\mathbf{X}_{e_{ij}} = concat(\mathbf{F}_i, \mathbf{F}_j)\]where \(e_{ij}\) means an edge connecting nodes \(i, j\)
- Parameters
F – \((b\times d \times n)\) extracted point-level feature matrix. \(b\): batch size. \(d\): feature dimension. \(n\): number of nodes.
G – \((b\times n \times e)\) factorized adjacency matrix, where \(\mathbf A = \mathbf G \cdot \mathbf H^\top\). \(e\): number of edges.
H – \((b\times n \times e)\) factorized adjacency matrix, where \(\mathbf A = \mathbf G \cdot \mathbf H^\top\)
device – device. If not specified, it will be the same as the input
- Returns
edge feature matrix X \((b \times 2d \times e)\)